超低消費電力型光エレクトロニクス実装システム 技術開発プロジェクト - デバイス・実装基盤技術 -

2022年2月10日

技術研究組合光電子融合基盤技術研究所 中村 隆宏

光電子集積インタポーザの必要性

■ 10Tbpsを可能にするには光電子集積インターポーザが必要 ■ 特に、光実装技術、光接続技術が大きな課題

光電子集積インタポーザの基盤技術

- 光電子集積インターポーザは、大容量伝送のみでなく、低消費電力、小型・低コストも同時に求められる
- これら全要素を満たす基盤技術(デバイス、集積化プロセス、光実装)を開発 する

-小りり1000八女米

10Tbps達成の内訳とデバイス・実装技術開発目標

光電子集積インターポーザ

1 シリコンフォトニクスチップ当たり 112Gbps×16波×送受(2) = 3.6Tbps

1 LSI当たり 3シリコンフォトニクスチップで、 3.6Tbps × 3 ≒ 10Tbps

第一期の技術目標 第二期の技術目標 第三期の技術目標						
デバ	高速デバイス	25Gbps/Si変調器	50Gbps/PAM4	112Gbps/56GBaud+PAM4		
イス・プロセ	低電力デバイス	5mW/Gbps /Si変調器	3mW/Gbps / 高性能材料(SiGe)変調器	1mW/Gbps / 小型電界吸収型SiGe変調器		
ス 術 発 実 技 術	波長多重デバイス	4波長/アレイ導波路型 回折格子(AWG)(素子)	8波長/AWG(素子)	16波長/AWG+バンドパスフィルタ (集積回路)		
	光の入出力 (広帯域密度)	10μmレベル目合わせ精度/ グレーティングカプラ+縦型ポリマー導波路 (0.5Tbps/mm ²)		1μmレベル目合わせ精度/ 3次元ミラー+横型ポリマー導波路 (20Tbps/mm ²)		
開発	電気配線構造	平面構造		インターポーザ構造		

デバイス・実装基盤技術の開発計画

デバイス技術

デバイス技術の開発目標

3.6Tbps(112Gbps×16波×送受)×3チップ=10Tbps

光変調器・受光器のアプローチ

デバイス技術

- 波長多重によるスケーリング可能、且つ、低消費電力・高速伝送を実現する光変調器・ 受光器を開発
 - ⇒小型・低容量のGeSi電界吸収(EA)型光変調器/受光器が有利 特徴として、狭幅選択Ge成長を用てC、L帯波長を1チップ集積化可能(13Tbps以上)

Si光変調器の比較

光変調器・受光器の駆動電子回路のアプローチ

デバイス技術

- └ 112Gbps PAM4のTx/Rxの方式とIC構成を検討
- 小型化、低消費電力化には電気でPAM4(Type2)が有利 →実証コストの点からSiGe-BiCMOSが有利

■ PAM4に必要なLinear AMPの112Gbps PAM4動作を回路設計・試作にて検証

高速光変調器

デバイス技術

■ドーピングと素子形状最適化により70GHz以上の周波数帯域、56Gbpsアイ波形確認 ■高温85℃においても56Gbps動作可能

■112Gbps-PAM4電気信号での直接駆動により光信号出力を実証

光変調器ドライバー

デバイス技術

- 電界吸収型光変調器ドライバーを試作・評価
 - ●最先端SiGe-BiCMOSプロセスを用いて、高線形動作回路設計により、56Gbps NRZ、
 112Gbps PAM4の電気出力波形を確認

IC内広帯域インピー

(多重反射を抑制、 高品質な出力波形)

ダンス整合

OUT

●高振幅・低ジッタ化回路を設計し、2Vppを達成

電界吸収型光調器ドライバーチップ写真

56Gbps NRZ出力波形 単相振幅 1Vpp(50Ω終端)

112Gbps PAM4出力波形PN31 単相振幅 1Vpp(50Ω終端)、光変調器負荷で2Vpp

電界吸収型光変調器ドライバーを試作・評価し、112Gbps PAM4の出力波形を確認

受光器トランスインピーダンスアンプ(TIA)

デバイス技術

- SiGe-BiCMOSで試作したTIAと導波路型Ge-PDをFlip Chip実装してRxを作製
 - 56Gbps NRZ及び112Gbps PAM4光入力の電気特性を評価
 - Single-PD方式TIA搭載Rxで良好な56Gbps動作を実証
 - 更に、112Gbps PAM4の出力波形を確認

Single-PD方式TIA搭載RX

CMOS DCフィー バック回路

56Gbps RX出力波形

112Gbps PAM4 RX出力波形 I_{PD}=410µA_{pp}

TIAを試作・評価し、Flip Chip実装したRxで良好な56Gbps及び112Gbps PAM4動作を実証

CMOSを用いた1mW/Gbps低消費電力化

波長多重光回路

任意偏波の16波長のWDM光信号を合分波可能な小型波長多重回路を実証

高速光変調器+16波長多重光回路

デバイス技術

Cバンド波長帯

<u>消光比4~4.4dB@2.5Vpp</u>

GeSi電界吸収型光変調器を用いて、50Gbps動作×16波長動作@Cバンド波長帯を実証

次世代温度耐性波長多重光回路

デバイス技術

- 非対称マッハツェンダーに光モニタとヒーターによるフィードバック制御を導入し位相エラーを 自動訂正。クロストーク-50~-60dB@4波長を実現。(シミュレーションでは64波長可能) ■ 更に、温度変化に対しフィードバック制御可能な電子回路を集積した耐温度・クロストー クフリーの波長多重光回路を実現
- 急激な温度変化(少なくとも0.53℃/s)に対して4ch 25Gbps信号で各波長分波後、エラー フリーを実現

CAT (Cascaded AMZ Triplets)構造を持つ波長分波回路

と電子制御回路

Port 1

-20

Port 2

1308

Port 3

1310

Wavelength (nm)

Port 4

1312

Crosstalk

1316

1314

温度変化に対する光出カスペクトル及び アイパターンの変化

超低消費電力型光エレクトロニクス実装システム技術開発 最終成果報告会(2022年2月10日)

集積化プロセス技術

集積化プロセス技術の開発目標とアプローチ

10Tbps/ノード可能性実証試作

集積化プロセス技術

10Tbps/ノードの高速光回路に集積される高機能光素子の特性改善・動作検証

300mmー貫ファンドリへの展開

集積化プロセス技術

ファンドリにおいて集積プロセスを構築、集積デバイス動作の検証を完了

評価解析 - パラメータ抽出手法、デバイスモデル-

ばらつきモデルを用いた高精度デバイス・回路設計

集積化プロセス技術

ばらつきモデルを用いたトランシーバ設計検証

光実装技術

シリフォト実用化の大きな課題: 光の入出力

光実装技術の開発目標

光実装技術

最終目標:

- ・16 波長多重に対応した波長偏波無依存な曲面ミラーをシリコンフォトニクスに集積
- ・上下曲面ミラーの高密度光結合20Tbps/mm²を実現
- ・光コネクタ用位置決め構造の高精度化と高精度実装技術を確立し、12芯光接続技術を実現
 ・マルチチップ実装技術、再配線技術、放熱構造技術を確立

10Tbps/ノード広帯域化実現に向け、波長多重技術を導入するため、 シングルモードファイバの入出力が必須

⇒高性能な高密度光結合(20Tbps/mm²)を実現するために3次元曲面ミラーを導入し 安価なパッシブ実装でシングルモードファイバを実装する

光実装技術のアプローチ、特徴技術

光実装技術

高性能な高密度光結合を実現するために新しい光結合手法(曲面ミラー)を提案

	グレーティング	アディアバティック	曲面ミラー(PETRA)			
光リンク (実装方式)	ファイバダイレクト (アクティブ実装)	ポリマー導波路 (パッシブ実装)	ポリマー導波路 (パッシブ実装)			
シリフォト結合器	グレーティング	アディアバティック	曲面ミラー			
光結合面積	$\Delta \sim 10 \text{ mm}^2$	O ~2 mm²	◎ ~ 0.15 mm ²			
IO密度 @100G/λ	$\Delta \sim 80 \text{ G/mm}^2$	O ∼600 G/mm²	© ~ 20T/mm² @16λ			
光結合損失	O ~ 2 dB	O ~ 1.5 dB	〇 目標< 1.5 dB			
波長無依存	×	0	0			
偏波無依存	2D : O, 1D : ×	0	0			
<u>グレーティング</u> ガラスブロック シリコンフォトニクス アディアバティック レーティンク シリコンフォトニクス シリコンフォトニクス シリコンフォトニクス ・ファイバ						

3次元ミラーの作製方法

■ グレースケール露光を用いた3次元立体構造の作製

(上下ミラー、ポリマー光導波路)

レンズ形状作製例

3次元ミラーの作製課題

光実装技術

形状変化を考慮したデザイン補正を行うことで所望の 構造を実現

・8種類のシリコンSSCに対応した3次元ミラー構造(最小曲率半径:20µm)を作製
 ・水平方向では±5.0%以下のばらつきを実現。垂直方向±25.8%、角度方向±1.0%
 (ロス0.5dBの許容ばらつき範囲例:曲率(水平)±21%、曲率(垂直)±23%、角度±1.1%。
 ※SSC tip 200nm width)

光電子集積インターポーザ基板の試作

光実装技術

 ■ 160nm先端幅のSSCを持つシリコン導波路に適した上下ミラーとポリマー光導波路 を集積した光電子集積インターポーザ基板を試作し、ミラー損失測定 ⇒上下ミラー(2.85dB)+ポリマー導波路(0.35dB)で3.2dBの低損失化を実現
 ■ 85℃まで良好な112Gbps伝送特性を実現

超低消費電力型光エレクトロニクス実装システム技術開発 最終成果報告会(2022年2月10日)

光電子集積インターポーザ用光コネクタ

低コスト樹脂コネクタ

金属ピン

(既製品)

金属ピンが一直線となる機構

インターポーザ用光コネクタ

基板位置決め構造、コネクタ位置決め構造、

^{光実装技術} ■ 光電子集積インターポーザ用に2種類の光コネクタを検討

高信頼シリコンV溝コネクタ シリコンV溝を基板に埋め込み、それを目印 に導波路を製作

超低消費電力型光エレクトロニクス実装システム技術開発 最終成果報告会(2022年2月10日)

ポリマー光導波路

基板位置決め構造

1380

コネクタ位置決め構造

光電子集積インターポーザのベンチマーク

 PETRA、Ayar Labs、 Ciscoはシリフォト集積 チップをタイル方式で LSIチップの周辺に配置 する方式

消費電力の削減とI/O 密度の増大が重要。 更に、光ファイバー数増 加に伴う、接続問題の 解決が重要になる。

社名	PETRA ¹⁾	Ayar Labs ²⁾	Cisco Systems ³⁾
全体外形	1.6Tbpsシリコンフォトニタス 業項回路トランシーバ (112Gbp PAMX 163度) ドライパ510 スイッチASI0 イリール互換 コネクタ コ次元曲面をラー	A REAL OF A REAL	Innote tight Source Source Training Option This Option Constru- Tabler Homes
光エンジン	SiGe=6Aまを思想 Ge史末名 Ge史末 Ge史末 Ge史末 Ge史末 Ge史末 Ge史末 Ge史末 Ge史末	Optical Chiplet (TeraPHY)	Optical Tile
1チップ当たり の伝送容量	1.6T (16λ × 112Gbps PAM4)	1.6T (8 × 8λ × 25Gbps NRZ)	12.8T(32 × 400G) (400G=4(λ) × 100G PAM4)
消費電力	1mW/Gbps(シミュレーション)	<5mW/Gbps	∼9mW/Gbps (Target)
I/O密度	>2Tbps/mm (20Tbps/mm ²)	1Tbps/mm	_
コスト	〇光コネクタ数削減で低コスト化	×光コネクタ数大	× 光⊐ネクタ数大
変調器	GeSI-EAM (低消費電力化) 112Gbps	Siリング変調器 25Gbps	Si-MZ変調器(セグメント型) 100Gbps
受光器	導波路型Ge受光器	リング型SiGe受光器	導波路型Ge受光器
MUX/DeMUX	AMZI+AWG <mark>16波長</mark>	リング 8波長	カスケードリング 4波長
LD	外部光源	外部光源(Super Nova)	外部光源
光接続	ポリマーミラー+ポリマー導波路 (Fanoutによるコネクタ数削減)	回折格子	回折格子
電気接続	ポリマー多層配線(3D基板埋込)	光電子モノリシック回路のためフレキシブル	C4 bump (~150µm pitch) (SiPh-基板間はTSV)

1)中村, 電子情報通信学会論文誌C, vol. J104-C, No. 8, pp. 1-7, 2021.

2)M. Wade, HotChips 2019.

3)B. Welch, EPIC Online Technology Meeting on Co-Packaged Optics, 2020.

まとめ

<u>デバイス技術</u>

- 光変調器、受光器及びこれらを駆動する電子回路の112Gbps PAM4動作を実証した。
- 16波長を合分波可能な波長多重フィルタを開発し、低損失、低クロストーク特性を実証した。
- 22nm CMOSを用いた解析で1mW/Gbpsの低消費電力化の目途を得た。

<u>集積プロセス技術</u>

- 300mm統合プロセスを確立し、これを用いた10Tbps/ノード可能性実証試作を完了した。
 集積プロセスの一貫試作ファンドリへの展開を完了した。
- ウエハプローバを用いた設計・プロセス統合ライブラリを構築し、ばらつきモデルによる 設計・プロセスの高信頼化を実現した。

<u>光実装技術</u>

- 3次元ミラーを用いて光電子集積インターポーザを試作し、シリフォト光入出力密度 20Tbps/mm²と10Tbps 伝送密度の光リンクを実証した。
- シングルモードポリマー光導波路アレイとシングルモード光ファイバアレイの12芯高精度 光結合(平均<2dB)を実証した。</p>

以上より、プロジェクト目標を全て達成した。